

Visit u	s at v	www.agyatgupta.com
---------	--------	--------------------

THE

REGNO:-TMC -D/79/89/36/63

CODE:- AG-TS-2-3663 General Instructions :-

All question are compulsory.

2.	The question paper consists of 26 questions divided into three sections A,B and C.
	Section – A comprises of 6 question of 1 mark each. Section – B comprises of 13
	questions of 4 marks each and Section – C comprises of 7 questions of 6 marks each.
3.	There is no overall choice. However, internal choice has been provided in 4 question
	of four marks and 2 questions of six marks each. You have to attempt only one If the
	alternatives in all such questions.
4.	Use of calculator is not permitted.
5.	Please check that this question paper contains 8 printed pages.
6.	Code number given on the right hand side of the question paper should be written on

the title page of the answer-book by the candidate.

सामान्य निर्देश :

- 1. सभी प्रश्न अनिवार्य हैं।
- इस प्रश्न पत्र में 26 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 6 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड ब में 13 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है
- 3. प्रश्न संख्या 1 से 6 बहविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
- 4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 4 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकूलेटर का प्रयोग वर्जित हैं ।
- कृपया जाँच कर लें कि इस प्रश्न–पत्र में मुद्रित पृष्ठ 4 हैं। 6.
- 7. प्रश्न–पत्र में दाहिने हाथ की ओर दिए गएँ कोड नम्बर को छात्र उत्तर–पुस्तिका के मुख–पृष्ठ पर लिखें

PRE-BOARD EXAMINATION 2014 -15

Time	e:3 Hours		Maximum Marks : 100
CLASS – XII CBSE MATHEMATIC		MATHEMATICS	
		PART – A	
Q.1	If $\vec{a} \& \vec{b}$ are two un	nit vectors inclined to x	-axis at angles $30^{\circ} \& 120^{\circ}$

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860; 9425772164(P) 1

	Visit us at www.agyatgupta.com
	respectively, then write the value of $\left \vec{a} + \vec{b} \right $.
Q.2	Write the value of $\int_{0}^{\pi/2} \log \left[\frac{3 + 5 \cos x}{3 + 5 \sin x} \right] dx$.
Q.3	For two non zero vectors \vec{a} and \vec{b} write when $ \vec{a} + \vec{b} = \vec{a} + \vec{b} $ holds.
Q.4	A matrix A of order 3×3 has determinant 5. What s the value of $ 3A $?
Q.5	Write the smallest equivalence relation R on Set $A = \{1, 2, 3\}$.
Q.6	A four digit number is formed using the digits 1,2,3,5 with no repetitions. Find the probability that the numbers is divisible by 5.
	PART – B
Q.7	Evaluate : $\int \frac{2 + \sin x}{1 + \cos x} e^{x/2} dx$
	OR
	Evaluate : $\int \frac{5x}{(x+1)(x^2+9)} dx$.
Q.8	A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lower most. Its semi – vertical angle is tan ⁻¹ (1/2). Water is poured into it at a constant rate of 5 cubic meter per minute. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 10m.
Q.9	If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, prove that $(aI + bA)^n = a^n$. I + na ⁿ⁻¹ bA where I is a unit
	matrix of order 2 and n is a positive integer. OR

Target Mathematics by- AGYAT GUPTA; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P) 2

Visit us at www.agyatgupta.com

	If a, b and c are real numbers and $\begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 0$. Show
	a+b-b+c-c+a that either $a + b + c = 0$ or $a = b = c$.
Q.10	Show that the function $y = (A + Bx)e^{3x}$ is a solution of the
	equation $\frac{d^2 y}{dx^2} - 6\frac{dy}{dx} + 9y = 0.$
Q.11	Find the shortest distance between the lines, whose equations are
	•
	$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{10-z}{-7} \text{ and } \frac{x-15}{3} = \frac{58-2y}{-16} = \frac{z-5}{-5} \text{ .Also find the angle}$
	between two lines .
	OR
	Find the equation of the plane passing through the intersection of the
	planes, $2x + 3y - z + 1 = 0$; $x + y - 2z + 3 = 0$ and perpendicular the
	plane $3x - y - 2z - 4 = 0$. also the inclination of this plane with the
	xy- plane.
Q.12	Show that the differential equations $2y e^{x/y} dx + (y - 2x e^{x/y}) dy = 0$ is
	homogeneous and find its particular solution given that $x = 0$ when y
	= 1.
	OR
	The population of a village increases continuously at the rate
	proportional to the number of its inhabitants present at any time. If
	the population of the village was 20000 in 1999 and 25000 in the
	year 2004, what will be the population of the village in 2009?
Q.13	If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = 0$ and
	angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$, prove that $\vec{a} = \pm 2(\vec{b} \times \vec{c})$.

 Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860;9425772164(P)

Visit us at www.agyatgupta.com

	visit us at www.agyatgupta.com
Q.14	A man is known to speak truth 5 out of 6 times. He draws a ball from
	the bag containing 4 white and 6 black balls and reports that it is
	white. Find the probability that it is actually white? Do you think that
	speaking truth is always good?
Q.15	If $y = \sin^{-1}\left(\sqrt{x^4 - x^6} + \sqrt{x^2 - x^6}\right)$ Prove that $\frac{dy}{dx} = \frac{2x}{\sqrt{1 - x^4}} + \frac{1}{\sqrt{1 - x^2}}$.
Q.16	If $\sin^{-1}\frac{2p}{1+p^2} - \cos^{-1}\frac{1-q^2}{1+q^2} = \tan^{-1}\frac{2x}{1-x^2}$ then prove that $x = \frac{p-q}{1+pq}$.
Q.17	Evaluate : $\int_{1}^{3} (5x^{2} - e^{x} + 4) dx$ as a limit of sums
Q.18	Discuss the continuity and differentiability of $f(x) =$
	(1-x) x < 1
	$\begin{cases} 1-x & x < 1 \\ (1-x)(2-x) & 1 \le x \le 2 \\ 2 & x = x \ge 2 \end{cases}$ at $x = 1$ & $x = 2$.
	$\begin{pmatrix} 3-x & x > 2 \end{pmatrix}$
Q.19	Evaluate : $\int_{0}^{\pi} \frac{x dx}{1 - \cos \alpha \sin x}$.
	PART – C
Q.20	Three shopkeepers A, B, C are using polythene, handmade bags
	(prepared by prisoners), and newspaper's envelope as carry bags. It
	is found that the shopkeepers A, B, C are using (20, 30, 40), (30, 40,
	20), (40, 20, 30) polythene, handmade bags and newspapers
	envelopes respectively. The shopkeepers A, B, C spent Rs. 250, Rs.
	270& Rs. 200 on these carry bags respectively. Find the cost of each
	carry bags using matrices. Keeping in the mind the social &
	environmental conditions, which shopkeeper is better? Why?
Q.21	Find the probability that a year chosen at random has 53 Sundays.
Q.22	Find the area of the origin : $\{(x, y): 0 \le y \le x^2, 0 \le y \le x + 2; 0 \le x \le 3\}$

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860;9425772164(P)

Visit us at www.agyatgupta.com

	OR 2 C II I I I
	Find the ratio of the areas into which curve $y^2 = 6x$ divides the region
	bounded by $x^2 + y^2 = 16$.
Q.23	An isosceles triangle of vertical angle 2θ is inscribed in a circle of
	radius <i>a</i> . Show that the area of triangle is maximum when $\theta = \frac{\pi}{6}$.
	OR
	A point on the hypotenuse of a right triangle is at a distance 'a' and
	'b' from the sides of the triangle. Show that the minimum length of
	the hypotenuse is $[a^{2/3} + b^{2/3}]^{3/2}$.
Q.24	Avinash has been given two lists of problems from his mathematics
	teacher with the instruction to submit not more than 100 of them
	correctly solved for marks. The problems in the first list are worth 10
	marks each and those in the second list are worth 5 marks each. He
	knows from past experience that he requires on an average of 4
	minutes to solve a problem of 10 marks and 2 minutes to solve a
	problem of 5 marks. He has other subjects to worry about; he cannot
	devote more than 4 hours to his mathematics assignment. With
	reference to manage his time in best possible way, how many
	problems from each list shall he do to maximize his marks? What is
	the importance of time management for students?
Q.25	Find the foot of the perpendicular from $P(1, 2, 3)$ on the line
	$\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$ Also obtain the equation of the plane containing
	the line and the point $(1, 2, 3)$.
Q.26	Let X be a non – empty set. $P(x)$ be its power set. Let '* be an
	operation defined on element of $P(x)$ by $A * B = A \cap B \forall A, B \in$
	P(X) Then,
	(i) Prove that $*$ is a binary operation in P(X).
	() · · · · · · · · · · · · · · · · · ·

Visit us at www.agyatgupta.com

(ii) Is* commutative ?
(iii) Is* associative?
(iv)find the identity element in $P(X)$ w.r.t * .
(v) find the all the invertible element of $P(X)$
(vi) if O is another binary operation defined on P(X) as A O B = A \cup
B then verify that O distribution itself over *.

********* / /********

NOBODY CAN BE SUCCESSFUL IF HE DOESN'T LOVE HIS WORK